Abstract
In this work, we proposed a patch-based classifier (PBC) using Convolutional neural network (CNN) for automatic classification of histopathological breast images. Presence of limited images necessitated extraction of patches and augmentation to boost the number of training samples. Thus patches of suitable sizes carrying crucial diagnostic information were extracted from the original images. The proposed classification system works in two different modes: one patch in one decision (OPOD) and all patches in one decision (APOD). The proposed PBC first predicts the class label of each patch by OPOD mode. If that class label is the same for all the extracted patches and that is the class label of that image, then the output is considered as correct classification. In another mode that is APOD, the class label of each extracted patch is extracted as done in OPOD and a majority voting scheme takes the final decision about class label of the image. We have used ICIAR 2018 breast histology image dataset for this work which comprises of 4 different classes namely normal, benign, in situ and invasive carcinoma. Experimental results show that our proposed OPOD mode achieved a patch-wise classification accuracy of 77.4% for 4 and 84.7% for 2 histopathological classes respectively on the test set obtained by splitting the training dataset. Also, our proposed APOD technique achieved image-wise classification accuracy of 90% for 4-class and 92.5% for 2-class classification respectively on the split test set. Further, we have achieved accuracy of 87% on the hidden test dataset of ICIAR-2018.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.