Abstract

Striatonigral neurons, known to promote locomotion, reside in both the patch and matrix compartments of the dorsal striatum. However, their compartment-specific contributions to locomotion remain largely unexplored. Using molecular identifier Kremen1 and Calb1 , we showed in mouse models that patch and matrix striatonigral neurons exert opposite influences on locomotion. Matrix striatonigral neurons reduced their activity before the cessation of self-paced locomotion, while patch striatonigral neuronal activity increased, suggesting an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed ongoing locomotion with reduced striatal dopamine release, contrasting with the locomotion-promoting effect of matrix striatonigral neurons, which showed an initial increase in dopamine release. Furthermore, genetic deletion of the GABA-B receptor in Aldehyde dehydrogenase 1A1-positive (ALDH1A1 + ) nigrostriatal dopaminergic neurons completely abolished the locomotion-suppressing effect of patch striatonigral neurons. Our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting ALDH1A1 + nigrostriatal dopaminergic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.