Abstract

Burrowing mammals are important ecosystem engineers, especially in open ecosystems where they create patches that differ from the surrounding matrix in their structure or ecosystem functions. We evaluated the fine-scale effects of a subterranean ecosystem engineer, the Lesser blind mole rat on the vegetation composition of sandy dry grasslands in Hungary. In this model system we tested whether the characteristics of the patch (mound size) and the matrix (total vegetation cover in the undisturbed grassland) influence the structural and functional contrasts between the mounds and the undisturbed grasslands. We sampled the vegetation of 80 mounds and 80 undisturbed grassland plots in four sites, where we recorded the total vegetation cover, and the occurrence and cover of each vascular plant species. We used two proxies to characterise the patches (mounds) and the matrix (undisturbed grassland): we measured the perimeter of the mounds and estimated the total vegetation cover of the undisturbed grasslands. First, we compared the vegetation characteristics of the mounds and the surrounding grasslands with general linear models. Second, we characterised the contrasts between the mounds and the undisturbed grassland by relative response indices (RRIs) of the vegetation characteristics studied in the first step. Species composition of the vegetation of the mounds and undisturbed grasslands was well separated in three out of the four study sites. Mounds were characterised by lower vegetation cover, lower cover of perennial graminoids, and higher diversity, and evenness compared to undisturbed grasslands. The contrast in vegetation cover between mounds and undisturbed grasslands increased with decreasing patch size. Increasing vegetation cover in the matrix grasslands increased the contrasts between the mounds and undisturbed grasslands in terms of total cover, perennial graminoid cover, diversity, and evenness. Our results suggest that mole rat mounds provide improved establishment conditions for subordinate species, because they are larger than other types of natural gaps and are characterised by less intense belowground competition. The ecosystem engineering effect, i.e., the contrast between the patches and the matrix was the largest in the more closed grasslands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.