Abstract
Land management practices that overlook soil limitations and potential have led to varying degrees of degradation. This study evaluates the carbon content in chemical and oxidisable soil fractions across different pasture recovery periods, comparing them to secondary forests. The management practices assessed include the following: secondary forest (SF), perennial pasture (PP), perennial pasture recovered five years ago (P5), and perennial pasture recovered eight years ago (P8), all on Plinthosols. We analysed carbon levels in oxidisable fractions and humic substances at depths of 0–0.10 m, 0.10–0.20 m, 0.20–0.30 m, and 0.30–0.40 m. The SF and P8 areas showed the highest organic matter content within the humic fractions, compared to the PP and P5 areas. Additionally, the P8 area demonstrated an increase in the labile and moderately recalcitrant fractions of organic matter, standing out among the different fractions evaluated. The multivariate principal component analysis indicated that P8 has the greatest impact on soil quality, followed by FS, P5, and PP. The pasture recovery over the past eight years has significantly improved soil carbon accumulation, highlighting the benefits of land restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.