Abstract

BackgroundNext generation transcriptome sequencing (RNA-Seq) is emerging as a powerful experimental tool for the study of alternative splicing and its regulation, but requires ad-hoc analysis methods and tools. PASTA (Patterned Alignments for Splicing and Transcriptome Analysis) is a splice junction detection algorithm specifically designed for RNA-Seq data, relying on a highly accurate alignment strategy and on a combination of heuristic and statistical methods to identify exon-intron junctions with high accuracy.ResultsComparisons against TopHat and other splice junction prediction software on real and simulated datasets show that PASTA exhibits high specificity and sensitivity, especially at lower coverage levels. Moreover, PASTA is highly configurable and flexible, and can therefore be applied in a wide range of analysis scenarios: it is able to handle both single-end and paired-end reads, it does not rely on the presence of canonical splicing signals, and it uses organism-specific regression models to accurately identify junctions.ConclusionsPASTA is a highly efficient and sensitive tool to identify splicing junctions from RNA-Seq data. Compared to similar programs, it has the ability to identify a higher number of real splicing junctions, and provides highly annotated output files containing detailed information about their location and characteristics. Accurate junction data in turn facilitates the reconstruction of the splicing isoforms and the analysis of their expression levels, which will be performed by the remaining modules of the PASTA pipeline, still under development. Use of PASTA can therefore enable the large-scale investigation of transcription and alternative splicing.

Highlights

  • Generation transcriptome sequencing (RNA-Seq) is emerging as a powerful experimental tool for the study of alternative splicing and its regulation, but requires ad-hoc analysis methods and tools

  • A logistic regression model for splice junction prediction Because of the uncertainty involved in identifying the precise location of splice junctions from short RNA-Seq reads, PASTA employs a logistic regression model to assign a score to each putative intron produced by a pair of junctions

  • We generated four simulated datasets of 50nt single-ended RNA-Seq reads from mouse transcripts appearing in ENSEMBL gene annotations, corresponding to average depths of coverage ranging from 1 to 8 reads per nucleotide, and we introduced random sequencing errors at a frequency of 1/1000 basepairs and Single Nucleotide Polymorphism (SNP) at a frequency of 5/1000 basepairs

Read more

Summary

Results

Comparisons against TopHat and other splice junction prediction software on real and simulated datasets show that PASTA exhibits high specificity and sensitivity, especially at lower coverage levels. PASTA is highly configurable and flexible, and can be applied in a wide range of analysis scenarios: it is able to handle both single-end and paired-end reads, it does not rely on the presence of canonical splicing signals, and it uses organism-specific regression models to accurately identify junctions

Conclusions
Background
Results and discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.