Abstract

The expectations of the public and policymakers for accurate climate projections have grown with improvements in climate models. Internal variability, however, poses an inherent limit on climate predictability and, thus, accurate future climate projections of temperature and precipitation. This challenge is further amplified at a regional scale where internal variability can even dominate over forced anthropogenic climate change. In this study, we focused on the contribution of decadal climate variability and anthropogenic forcing (greenhouse gases and aerosols) on past precipitation changes over Australia since the 1970s. Using observational data, we find that the variance explained on decadal to multi-decadal timescales is comparable to that on sub-decadal scales across Australia, underlining the importance of examining Australian trends in the context of variability. While decadal and longer precipitation trends over Australia’s east coast are dominated by internal variability, significant drying trends in the austral winter (June to August) over southwest Western Australia and wettening trends in summer (December to February) over northwest Australia are evident. We further disentangle the influence of internal variability from that of different anthropogenic forcing agents on these trends using simulations from the CESM2 Large Ensemble and idealised anthropogenic aerosol simulations from PDRMIP (Precipitation Driver Response Model Intercomparison Project). Our findings provide additional evidence for the significant role of internal variability on regional climate change and also underline the importance of a focused dialogue between scientists, policymakers and the public to ensure realistic expectations for regional future climate projections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call