Abstract

Knowledge of the likely future wind, wave and surge climate in Liverpool Bay is of importance for coastal flood defence management. We examine a 140-year time series (1960–2100) of wind and wave model projections at the WaveNet buoy location in Liverpool Bay and also of surge model projection at two ports in Liverpool Bay, namely Liverpool and Heysham. To this end we use model projections from the UK Climate Projections 09 (UKCP09) programme. We use a medium emissions scenario ensemble from the HadCM3 climate model sensitivity tests. A continental shelf model (CS3) with ~12 km resolution was used to separately simulate the waves and the surge. The models are forced by hourly wind and pressure data from the Met Office (Hadley Centre) regional climate model (RCM). Swell wave boundary conditions are generated over the full Atlantic using global climate model (GCM) winds. Analysis of significant changes in the statistics over time shows that there is little change in extreme wave and surge conditions in Liverpool Bay. Although there is a slight increase in the severity of the most extreme events, the frequency of extreme wind and wave events is slightly reduced, while the frequency of extreme surge events slightly increases over the 140-year period. From the model projections, we find that the trends in the local wind are directly reflected in the wave field within Liverpool Bay. The trends in the skew surge projections deviate slightly from those in the wind patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.