Abstract

AbstractThe glycolipids cellobiose lipids (CL) and mannosylerythritol lipids (MEL) are biosurfactants mainly synthesized by microorganisms of the Ustilaginaceae family. They have a large structural diversity, varying in their sugar moieties and the attached fatty acids, resulting in a prospectively broad range of applications. This literature review provides a detailed overview of known microbial producers of CL and MEL, and their respective metabolic pathways that result in different molecular structures. Further, current advances in the aerobic fermentative synthesis of the glycolipids and their purification methods are illustrated. All influencing factors identified to date with regard to the fermentation are highlighted in detail: For CL synthesis usually hydrophilic carbon sources are used as substrate, whereas hydrophobic carbon sources are usually metabolized to MEL. Nitrogen limitation was described as a major trigger for glycolipid synthesis and an acidic pH range was favored for increased CL production. An overview of applied fermentation parameters in recent publications (e.g., substrate‐concentrations, feeding approaches) demonstrates the future potential of CL and MEL production optimization. Foaming during fermentation is either combated or exploited by foam fractionation as the first purification step. The current purification processes focus on solvent extractions and chromatography in the laboratory scale and a need for development was identified for future scale‐up. Finally, environmental hotspots during CL and MEL production are presented and future optimization potentials are highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.