Abstract
Secure secret password storage is an essential perspective in frameworks dependent on secret phrase Substantiation method, which is as yet the most broadly utilized Substantiation confirmation procedure, in spite of its some security imperfections. In this paper, a secret key Substantiation architecture structure is implemented that is intended for secure secret password storage and could be effectively incorporated into existing authentication frameworks. In this framework first the plain password which is received from the customer is given to cryptographic hash component for SHA-256 cryptographic process. After this, the hashed secret password is changed over into a negative secret password phrase. At last, the negative password is encoded/encrypted into an Encrypted Negative Password (ENP) utilizing a symmetric-key computation using for example, AES, and additionally to improve security, multi-repeated encryption could be utilized. The cryptographic hash function and symmetric encryption make it hard to break passwords from ENPs. Also, it provides lots of comparing ENPs for a given plain password, which makes pre-calculation intrusions (e.g., and rainbow table intrusion and query table attacks) infeasible. The complex calculations and comparisons of the algorithm provide good resistance towards intrusions and also provide stronger password protection. The proposed and implemented mechanism for Password Substantiation with Negative Password Encryption is a good secured password protection mechanism that merges cryptographic hash function, the negative password and the symmetric-key algorithm, without the requirement for extra data from the plain password.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Science, Communication and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.