Abstract

Abstract A novel tool wear predictive model was developed based on the current signals in this study. The system adapts to different part geometry with accurate prediction of the tool wear during the operation. The current sensor was utilized presenting a practical and better choice for tool wear monitoring which is inexpensive and no need to be attached to the working table or spindle. To avoid interruptions during the machining process, the tool wear was only measured at the end of the operation. The Long Short-Term Memory model was used to develop the tool wear prediction system. The tool wear prediction results indicate 23.92% and 36.41% average error for all the testing samples after 1/3 of the operations for profiling and straight turning, respectively. When the tool wear prediction was carried out after 2/3 of the operations, excellent results are observed with 6.15% error for profiling and 9.44% error for straight turning. The prediction results at the end of the operation shows 0.18% and 0.68% error for profiling and straight turning. The performance of the model using the current sensor shows that the model can predict the tool wear with less than 10% error after 2/3 of the turning operation without interfering with the turning process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.