Abstract

In this paper, we study the problem of embedding uncertain knowledge graphs, where each relation between entities is associated with a confidence score. Observing the existing embedding methods may discard the uncertainty information, only incorporate a specific type of score function, or cause many false-negative samples in the training, we propose the PASSLEAF framework to solve the above issues. PASSLEAF consists of two parts, one is a model that can incorporate different types of scoring functions to predict the relation confidence scores and the other is the semi-supervised learning model by exploiting both positive and negative samples associated with the estimated confidence scores. Furthermore, PASSLEAF leverages a sample pool as a relay of generated samples to further augment the semi-supervised learning. Experiment results show that our proposed framework can learn better embedding in terms of having higher accuracy in both the confidence score prediction and tail entity prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.