Abstract

This paper is concerned with the stabilization problem of uncertain chaotic systems with stochastic disturbances. A novel sliding function is designed, and then a sliding mode controller is established such that the trajectory of the system converges to the sliding surface in a finite time. Using a virtual state feedback control technique, sufficient condition for the mean square asymptotic stability and passivity of sliding mode dynamics is derived via linear matrix inequality (LMI). Finally, a simulation example is presented to show the validity and advantage of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.