Abstract

In the past, several motion and force controls were successfully implemented on rigid-joint robots with constraints. With the invention of mechanically compliant robots, the focus on designing controllers for elastic joint robots with constraints is increasing, especially involving the complexity of the joint elasticity in control. Aiming to bridge the gap between the control schemes of rigid- and elastic-joint robots, this letter presents a controller consisting of a PD+ task-space tracking and integral force control, while the intrinsic inertial and elastic properties of the system are fully preserved. We provide a passivity analysis and prove uniform asymptotic stability of the equilibrium. Simulations on a planar two-armed benchmark system with constraints validate the proposed control law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call