Abstract
An interleaved current-fed full-bridge converter has the capability to step up the voltage while maintaining a low input current ripple. Therefore, it is suitable for application such as a front-end converter for fuel cell where the source current ripple has to be small. However, since the source voltage varies with change in load profile, it is a challenge to design a stable controller that works well for a wide operating range. In this paper, an energy-based approach using a Brayton-Moser modeled passivity-based controller is proposed along with an augmented integrator to achieve voltage regulation under wide operating range. Experimental results verify that the proposed controller is able to achieve good dynamic performance and stable operation under wide operating range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.