Abstract

This paper is concerned with the problem of global exponential passivity for quaternion-valued memristor-based neural networks (QVMNNs) with time-varying delay. The QVMNNs can be seen as a switched system due to the memristor parameters are switching according to the states of the network. This is the first time that the global exponential passivity of QVMNNs with time-varying delay is investigated. By means of a nondecomposition method and structuring novel Lyapunov functional in form of quaternion self-conjugate matrices, the delay-dependent passivity criteria are derived in the forms of quaternion-valued linear matrix inequalities (LMIs) as well as complex-valued LMIs. Furthermore, the asymptotical stability criteria can be obtained from the proposed passivity criteria. Finally, a numerical example is presented to illustrate the effectiveness of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.