Abstract
In this paper, passivity analysis is conducted for discrete-time stochastic neural networks with both Markovian jumping parameters and mixed time delays. The mixed time delays consist of both discrete and distributed delays. The Markov chain in the underlying neural networks is finite piecewise homogeneous. By introducing a Lyapunov functional that accounts for the mixed time delays, a delay-dependent passivity condition is derived in terms of the linear matrix inequality approach. The case of Markov chain with partially unknown transition probabilities is also considered. All the results presented depend upon not only discrete delay but also distributed delay. A numerical example is included to demonstrate the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.