Abstract

A high pulse energy Q-switched ytterbium-doped fiber laser (YDFL) based on copper oxide (CuO) nanoparticles as a saturable absorber (SA) is demonstrated. The CuO nanoparticles have been fabricated into a thin film using a liquid-phase exfoliation method then it was integrated into a laser cavity to act as Q-switcher. The proposed Q-switched YDFL operates at a central wavelength of 1035.4 nm with a 3-dB bandwidth of 0.26 nm. The Q-switched laser has a repetition rate range from 57 kHz to 104 kHz by varying the pump power from 179 mW to 226.5 mW, while the pulse width was tuned from 4.5 µs to 2.2 µs. Relatively, high pulse energy around 0.192 µJ was achieved at an average output power of 20 mW. This laser with high pulse energy can be seen as a very promising pulsed laser source in many industrial and optical sensing applications. To the best of our knowledge, this is the first demonstration of a Q-switched fiber laser using CuO-SA in YDF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.