Abstract
Dietary oils─rich in omega-3, -6, and -9 fatty acids─exhibit critical impacts on health parameters such as cardiovascular function, bodily inflammation, and neurological development. There has emerged a need for low-cost, accessible method to assess dietary oil consumption and its health implications. Existing methods typically require specialized, complex equipment and extensive sample preparation steps, rendering them unsuitable for home use. Addressing this gap, herein, we study passive wireless, biocompatible biosensors that can be used to monitor dietary oils directly from foods either prepared or cooked in oil. This design uses broad-coupled split ring resonators interceded with porous silk fibroin biopolymer (requiring only food-safe materials, such as aluminum foil and biopolymer). These porous biopolymer films absorb oils at rates proportional to their viscosity/fatty acid composition and whose response can be measured wirelessly without any microelectronic components touching food. The engineering and mechanism of such sensors are explored, alongside their ability to measure the oil presence and fatty acid content directly from foods. Its simplicity, portability, and inexpensiveness are ideal for emerging needs in precision nutrition─such sensors may empower individuals to make informed dietary decisions based on direct-from-food measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.