Abstract
The demand for unprecedented data and ubiquitous wireless connections have led to the adoption of new types of transmitters and receivers. Additionally, different new types of devices and technologies need to be proposed for such demand. Reconfigurable intelligent surface (RIS) is going to play a very significant role in the upcoming beyond-5G/6G communications. It is envisioned that not only the RIS will be deployed to assist and create a smart wireless environment for the upcoming communications, but also the receiver and transmitter can be fabricated using RIS to make a smart and intelligent transmitter and receiver. Thus, the latency of upcoming communications can be reduced very significantly using RIS, which is a very important factor. Artificial intelligence assists communications and shall be adopted widely for the next generation networks. In this paper, radiation pattern measurement results of our previously published RIS have been provided. This work is the extension work of our previously proposed RIS. The polarization-independent passive type of RIS working in the sub-6 GHz frequency band using low-cost FR4-substrate was designed. Each unit cell with dimensions of 42 mm × 42 mm had a single-layer substrate backed by a copper plate. A 10 × 10-unit cell array was fabricated to check the performance of the RIS. Such types of unit cells and RIS were designed to set up initial measurement facilities in our laboratory for any kinds of RIS measurements.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.