Abstract

AbstractMine drainage from the St Louis Tunnel (located at the Rico-Argentine Site) is circumneutral most of the year, with spring freshets increasing flow, decreasing pH and increasing metals concentrations. This study was designed to test the performance of a demonstration-scale horizontal wetlands passive treatment train, comprised of a settling basin, surface flow wetland, horizontal-flow anaerobic wetland, aeration channel, and rock drain, during two years of influent water chemistry at a constant 113 L/min (30 gpm) flow rate. Total Zn, Cd, and Mn effluent concentrations met project treatment goals (PTGs) 75, 96.9, and 100% of the time, respectively, and 93.9, 100, and 100% of the time for the dissolved metals. Most PTG exceedances occurred during the freshet events. Most Zn and Cd attenuation was attributed to sulfide precipitation in the anaerobic cell and capture/filtration of suspended ZnS particles in the anaerobic wetland and rock drain. Manganese was attenuated in the aerobic portion of the anaerobic cell (influent transition zone) as Mn oxides and carbonates. Oxidation of Mn occurred in the rock drain as biogenically formed Mn oxides adhered to the rock matrix. Carryover of dissolved sulfides from the anaerobic cell limited the rock drain’s Mn removal efficiency. Low temperatures did not significantly affect biological activity within the system; the effects of seasonal water quality were more important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call