Abstract

Passive or unassisted ion permeation through lipid bilayers involves a type of rare events by which cells regulate their salt concentrations and pH. It is important to understand its mechanism in order to develop technologies of, for example, delivering or maintaining small drug-like molecules inside cells. In earlier simulations of passive ion permeations, the commonly used sampling methods usually define the positions of ions relative to the membrane as a measure of permeation, i.e., the collective variable, ignoring the active participations of other particles. Newly defined collective variables involving the movements of ions, lipids, and water molecules allow us to identify the transition paths on the free energy landscape using the 2D umbrella sampling techniques. In this work, this technique was used to study the permeation processes of some well-known ions, sodium, potassium, and chloride. It is found permeations of sodium and potassium are assisted by important lipid bilayer deformations and massive water solvation, while chloride may not. Chloride may have two different possible pathways, in which the energetic favorable one is similar to the solubility-diffusion model. The free energy barriers for the permeation of these ions are in semiquantitative agreement with experiments. Further analyses on the distributions of oxygens and interaction energies suggest the electrostatic interactions between ions and polar headgroups of lipids may greatly influence membrane deformation as well as the water wire and furthermore the free energy barriers of waterwire mediated pathways. For chloride, the nonwaterwire pathway may be energetically favorable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.