Abstract

Single cardiac myocytes and skeletal myocyte fragments, devoid of interstitial collagen but with intact glycocalyx, were prepared by mechanical disaggregation of hamster ventricular myocardium and caudal gracilis muscle, respectively. Passive stiffness was studied by examining the sarcomere length-tension relationship over the approximate Eulerian stress range of 0-20 mN/mm2 for cardiac myocytes and 0-120 mN/mm2 for skeletal myocytes. Creep and stress-relaxation became apparent only when cells were stretched to sarcomere lengths close to, or exceeding, 2.2 micron for the cardiac myocytes, and 2.7 micron for the skeletal myocytes. Stress-relaxation and creep occurred simultaneously, suggesting that the sarcomere is at least one of the structural components responsible for viscoelasticity. The differential strain stiffness constant was calculated from the regression of natural stress [Ln(mN/mm2)] against differential strain [(L-Lo)/Lo] and found to be 7.48 +/- 1.73 for the ventricular myocytes and 5.77 +/- 0.87 for the skeletal myocyte fragments. The natural strain stiffness constant was obtained from the regression of natural stress against natural strain [Ln(L/Lo)]. The natural strain stiffness constant was 30-50% higher than the differential strain constant. The high correlation coefficients obtained for both regressions indicate that the length-tension relationships for these isolated cardiac and skeletal myocytes can be very closely fitted to the single exponential function, sigma = C X exp[K(epsilon)]. The length-tension curves obtained for the skeletal myocyte fragments are qualitatively and quantitatively similar to those obtained by others with intact skeletal muscle. The cardiac myocyte length-tension curves are qualitatively, but not quantitatively, similar to those obtained with cardiac muscle. Isolated ventricular myocytes are stiffer than similarly isolated skeletal myocytes. These findings suggest that cellular structures contribute to myocardial stiffness in the hamster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.