Abstract
In this letter, we present a passive spine gripper that can hold rough rocky surfaces of boulders on cliff walls, and we discuss its application to a four-limbed robot for free-climbing in extreme terrain. The limbed robot has four degrees of freedom in each limb, where three are to drive joints of the limb and one for releasing the gripper. The fine spine of the proposed gripper also enables it to passively and adaptively latch on to microscopic asperities of the rough surface, and it is thus an efficient mechanism. In this letter, we present the fundamental design and mechanism of the proposed gripper, after which we introduce its static gripping model. We verify the gripping model by the experimental gripping performance of the prototype gripper. We show a lightweight four-limbed robot that is equipped with the grippers mounted on each limb. To evaluate the climbing capabilities of the robot, we use it to perform climbing experiments on a rugged and steep slope. The results show that the prototype can safely climb over such challenging terrain that is similar to a gravity offload system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.