Abstract

Helicopter detection is an important part of the safety and security during flight. Most of the aerodynamic noise of modern helicopters comes from the main rotor, the main rotor aerodynamic noise thus can be used for helicopter detection. However, the Signal-to-Noise Ratio (SNR) of the measurement noise has always been quite small while the helicopter is flying over long distance away from the microphone. The current passive detection methods are not robust enough in the presence of substantial interference. A robust passive sound detection method is proposed to detect the far-field helicopter based on the cyclostationarity of the main rotor noise. The Sparsity-Enhanced Spectral Coherence (SESC) is derived from the spectral coherence decomposition to improve the detection robustness at far distances and low SNR. Furthermore, a global detector is constructed to detect helicopters adaptively by fusing the detection of multiple orders of BPF, which can be performed on the calculated SESC. More accurate and robust detection of the far-field helicopter can be obtained by the proposed SESC detector. The effectiveness of the proposed detection approach is demonstrated and contrasted by using simulation and far-field flight test measurements of the ROBINSON R22 helicopter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.