Abstract

Passive solar building design considers the effect that sunlight has on energy usage. The goal is to reduce the need for artificial cooling and heating devices, thereby saving energy costs. A number of competing design objectives can arise. Window heat gain during winter requires large windows. These same windows, however, reduce energy efficiency during nights and summers. Other model requirements add further complications, which creates a challenging optimization problem. We use genetic programming for passive solar building design. The EnergyPlus system is used to evaluate energy consumption. It considers factors ranging from model construction (shape, windows, materials) to location particulars (latitude/longitude, weather, time of day/year). We use a strongly typed design language to build 3D models, and multi-objective fitness to evaluate the multiple design objectives. Experimental results showed that balancing window heat gain and total energy use is challenging, although our multi-objective strategy could find interesting compromises. Many factors (roof shape, material selection) were consistently optimized by evolution. We also found that geographic aspects of the location play a critical role in the final building design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call