Abstract
The common-reflection-surface (CRS) stack can be viewed as a physically justified extension of the classical common-midpoint (CMP) stack, utilizing redundant information not only in a single, but in several neighboring CMP gathers. The zero-offset CRS moveout is parameterized in terms of kinematic attributes, which utilize reciprocity and raypath symmetries to describe the two-way process of the actual wave propagation in active seismic experiments by the propagation of auxiliary one-way wavefronts. For the diffraction case, only the attributes of a single one-way wavefront, originating from the diffractor are sufficient to explain the traveltime differences observed at the surface. While paraxial ray theory gives rise to a second-order approximation of the CRS traveltime, many higher-order approximations were subsequently introduced either by squaring the second-order expression or by employing principles of optics and geometry. It was recently discovered that all of these higher-order operators can be formulated either for the optical projection or in an auxiliary medium of a constant effective velocity. Utilizing this duality and the one-way nature of the CRS parameters, we present a simple data-driven stacking scheme that allows for the estimation of the a priori unknown excitation time of a passive seismic source. In addition, we demonstrate with a simple data example that the output of the suggested workflow can directly be used for subsequent focusing-based normal-incidence-point (NIP) tomography, leading to a reliable localization in depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.