Abstract

This work aims to investigate how the presence of a downstream cylinder affects the passive scalar transport in a cylinder wake. The wake was generated by two tandem brass circular cylinders of the same diameter (d). The cylinder centre-to-centre spacing L/d was 1.3, 2.5 and 4.0, respectively, covering the three typical flow regimes of this flow. The upstream cylinder was slightly heated. Measurements were conducted at x/d= 10 and Re (≡ dU∞/ν, where U∞ is the free-stream velocity and ν is the kinematic viscosity of fluid) = 7000. A three-wire probe consisting of an X-wire and a cold wire was used to measure the velocity and temperature fluctuations, while an X-wire provided a phase reference. The phase-averaged velocity vectors and vorticity display single vortex street behind the downstream cylinder, irrespective of the flow regimes. However, the detailed flow structure exhibits strong dependence on L/d in terms of the Strouhal number, the vortex strength and its downstream evolution. This naturally affects passive scalar transport. The coherent and incoherent heat flux vectors show significant variation for different L/d.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.