Abstract
We investigate passive scalar mixing in spatially developing supersonic shear layer flows formed by two planar streams by means of large eddy simulation. After validation of the numerical procedures employing a high-order hybrid WENO/compact scheme by comparing the results of simulation with the results obtained from a well characterized experimental case, the effects of the convective Mach number, Mc, flow velocity ratio, r = U1/U2, and fluid density ratio, s = ρ1/ρ2, between Stream 1 and Stream 2 on passive scalar mixing are considered by examining the variation of mixing layer thickness and the mixing efficiency represented by the transport of the passive scalar. Mc is specified from 0.2 to 0.8. The evolution of large-scale coherent structures is well reproduced, with vortices undergoing rolling up, pairing, merging, and breaking up. The mixing layer thickness and mixing efficiency both decrease as Mc increases. As s increases, the mixing layer thickness increases, and the mixing efficiency of an entrained fluid decreases. As r increases, the mixing layer thickness decreases while the mixing efficiency increases. While the present results are not applicable to the examination of micro-mixing properties, which require assessment by experimental methods or high computing cost direct numerical simulation, they are useful for evaluating the effects of different flow parameters on macro-performance, which is equally important for scramjet combustor design and evaluation in engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.