Abstract

Quantitative passive scalar measurements were performed in an incompressible planar mixing layer at Re δ up to 104 using planar laser-induced fluorescence of acetone seeded into one side of the layer. Probability density functions compiled from sets of images showed a preferred mixture composition, favoring the high-speed fluid, which extended across the layer. This preferred composition produced non-marching PDFs and an inflection in the average mixture fraction profile. The spatial resolution of the experiment was found to be sufficient to accurately measure the fraction of mixed fluid within the layer. The mixed fluid fraction was found to increase to an asymptotic value of 0.5 by Re δ ≈ 5,000, the approximate location of turbulent transition, in contrast to high Schmidt number experiments which show minimal mixing before the transition point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.