Abstract
Satellite performance and capability have increased dramatically, particularly for micro- and nanosatellites, requiring more power supply and higher thermal conditions. Problems worth considering include how to provide more power with little or no weight increase, and how to reduce satellite thermal control difficulties. A new way to decrease the temperature of the solar panels on a satellite was proposed. Firstly, the model of solar cells is presented, and the relationship between solar irradiation and the electricity generated explained. Based on this, a new method to reduce the temperature of the solar cell is proposed. Details about current generation and temperature rise calculations for various types of solar cells are also provided. Finally, an experiment was conducted on original and proposed solar cells. While the experiment showed some degree of effectiveness, further experiments are needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.