Abstract

Bisphenol analogues (BPs) are ubiquitous emerging contaminants in water environments and have wide polarity ranges (1.65 < log Kow < 7.2). Integrated passive sampling strategy rarely contains hydrophilic and hydrophobic organics simultaneously, while the method has good application perspective in monitoring organic contaminants. This work evaluated passive sampling performance for fifteen BPs in a newly developed passive sampler, i.e., hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membrane (HECAM). In the dynamic accumulation experiments, both hydrophilic and hydrophobic BPs (including moderately hydrophilic BPs) well followed first-order kinetic uptake in the HECAMs. The estimated uptake rate constants, elimination rate constants, and equilibrium partition coefficients for BPs ranged from 4.4 L g−1 d−1 to 14.7 L g−1 d−1, 0.22 d−1 to 0.72 d−1, and 3.99 to 4.64, respectively. The kinetic parameters for BPs in HECAM show limited correlations to log Kow values, which the rule differs from traditional passive sampler. In the study of elimination kinetics, three deuterium labeled compounds showed incomplete elimination in HECAM and did not follow first-order isotropic exchange kinetics. Dual sorption mechanisms including both adsorption and partition were found for chemicals in HECAM, which the partitioned part could release to water and the adsorbed part could not easily release to water from HECAM. As a result, performance reference compounds (PRCs) calibration may be inapplicable to HLB sorbent-based passive sampler. The field deployment of HECAM in coastal waters of Guangdong, China resulted in the detection of eleven BPs, which indicated that the waters have been polluted by various BPs. Finally, monitoring strategy of simultaneous passive sampling hydrophobic and hydrophilic organic contaminants in surface waters was recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call