Abstract

We report a passive stabilization of the repetition rate for a mode-locked fiber laser by using an electro-optic modulator in a phase-biased nonlinear amplifying loop mirror. The underlying mechanism, in contrast to active feedback operations, lies in the cross-phase modulation between electrical and optical pulses within an electro-optic crystal. The resulting spectral shift can automatically compensate for the cavity-length drift via the group velocity dispersion. Consequently, the artificial actuator enables a capture range up to 2.3 mm, much longer than that achieved by index changes of the modulator. A robust and tight locking for the repetition rate is then realized with a standard deviation as low as 9 μHz with a 1-s sample time over 11 hours, corresponding to a fractional instability of 4.3 × 10-13. Furthermore, a dynamic optical sampling by repetition-rate tuning has been manifested with a fast refresh rate at 100 kHz and a broad scanning range over 305 ps. The demonstrated passive servo action may provide a simple yet effective way to stabilize the repetition rate with high precision, large bandwidth, and wide tunability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.