Abstract

Passive bistatic radar research is essential for accurate 3D target tracking, especially in the presence of missing or low-quality bearing information. Traditional extended Kalman filter (EKF) methods often introduce bias in such scenarios. To overcome this limitation, we propose employing the unscented Kalman filter (UKF) for handling the nonlinearities in 3D tracking, utilizing range and range-rate measurements. Additionally, we incorporate the probabilistic data association (PDA) algorithm with the UKF to handle cluttered environments. Through extensive simulations, we demonstrate a successful implementation of the UKF-PDA framework, showing that the proposed method effectively reduces bias and significantly advances tracking capabilities in passive bistatic radars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.