Abstract

Abstract Composite laser devices of passively Q-switched Nd:YAG were prepared by optical contacting between Nd:YAG and Cr,Ca:YAG crystal wafers followed by prolonged heating at elevated temperatures. Heating of the composite devices under reducing and/or oxidizing environments allowed to control the Cr4+ ion concentration in the Cr,Ca:YAG, thus affecting its absorption saturation behavior. Optical absorption saturation measurements on partially reduced Cr,Ca:YAG crystal were performed. Residual absorption of the saturable absorber at 1064 run results from the Cr4+ ion excited-state absorption. Laser damage threshold at the gain/absorber interface of the composite device, 14.7 J/cm2, is higher than at the entrance face. The device thus obtained was end-pumped by a fiber-optic-coupled diode laser, and exhibited short (∼5 ns), high repetition-rate pulsing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.