Abstract

This paper proposes an all-fiber fast optical frequency-hop code division multiple access (FFH-CDMA) for high-bandwidth communications. The system does not require an optical frequency synthesizer allowing high communication bit rates. Encoding and decoding are passively achieved by Bragg gratings, Multiple Bragg gratings replace a frequency synthesizer, achieving a hopping rate in tens of GHz. A main lobe sine apodization can be used in writing the gratings to enhance the system capacity and the spectrum efficiency. All network users can use the same tunable encoder/decoder design. The simultaneous utilization of the time and frequency domains offers notable flexibility in code selection. Simulations show that the encoder efficiently performs the FFH spread spectrum signal generation and that the receiver easily extracts the desired signal from a received signal for several multiple access interference scenarios. We measure the system performance in terms of bit error rate, as well as auto-to cross-correlation contrast. A transmission rate of 500 Mb/s per user is supported in a system with up to 30 simultaneous users at 10/sup -9/ bit error rate. We compare FFH-CDMA to several direct sequence-CDMA systems in terms of bit error rate versus the number of simultaneous users. We show that an optical FFH-CDMA system requires new design criteria for code families, as optical device technology differs significantly from that of radio frequency communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.