Abstract

Detecting risky driving has been a significant area of focus in recent years. Nonetheless, devising a practical, effective, and unobtrusive solution remains a complex challenge. Presently available technologies predominantly rely on visual cues or physical proximity, complicating the sensing. With this incentive, we explore the possibility of utilizing mmWave radars exclusively to identify dangerous driving behaviors. Initially, we scrutinize the attributes of unsafe driving and pinpoint distinct patterns in range-doppler readings brought about by nine common risky driving manoeuvres. Subsequently, we create an innovative Fused-CNN model that identifies instances of hazardous driving amidst regular driving and categorizes nine distinct types of dangerous driving actions. After conducting thorough experiments involving seven volunteers driving in real-world settings, we note that our system accurately distinguishes risky driving actions with an average precision of approximately 97% with a deviation of ±2%. To underscore the significance of our approach, we also compare it against established state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.