Abstract

An analytical model and supporting measured data are presented for a preamplified W-band radiometer with a zero-bias detector appropriate for commercial millimeter-wave imaging cameras. Basic radiometer parameters, including RF bandwidth, are computed directly from simple low-frequency measurements and compare well with those obtained from RF measurements. A detailed analytical model shows how radiometer performance depends on internal component parameters, such as low-noise amplifier gain, noise factor, reflection coefficient, detector responsivity, etc. The measurements suggest that performance is sufficient for operation without a Dicke switch or mechanical chopping. A measured noise equivalent temperature difference of 0.45 K was obtained, assuming a single sensor is scanned across a focal plane, forming 32 pixels with 3.125-ms integration time per pixel. This sensitivity is considered sufficient by commercial manufacturers to obtain quality images in low-contrast (e.g., indoor) environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.