Abstract

This paper describes a snow parameter retrieval algorithm from passive microwave remote sensing measurements. The three components of the retrieval algorithm include a dense media radiative transfer (DMRT) model, which is based on the quasicrystalline approximation (QCA) with the sticky particle assumption, a physically-based snow hydrology model (SHM) that incorporates meteorological and topographical data, and a neural network (NN) for computational efficient inversions. The DMRT model relates physical snow parameters to brightness temperatures. The SHM simulates the mass and heat balance and provides initial guesses for the neural network. The NN is used to speed up the inversion of parameters. The retrieval algorithm can provide speedy parameter retrievals for desired temporal and spatial resolutions, Four channels of brightness temperature measurements: 19V, 19H, 37V, and 37H are used. The algorithm was applied to stations in the northern hemisphere. Two sets of results are shown. For these cases, the authors use ground-truth precipitation data, and estimates of snow water equivalent (SWE) from SHM give good results. For the second set, a weather forecast model is used to provide precipitation inputs for SHM. Additional constraints in grain size and density are used. They show that inversion results compare favorably with ground truth observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.