Abstract

A real-time and label-free microstrip sensor capable of detecting and monitoring subsurface growth of Escherichia coli (E. coli) on solid growth media such as Luria-Bertani (LB) agar is presented. The microwave ring resonator was designed to operate at 1.76GHz to detect variations in the dielectric properties such as permittivity and loss tangent to monitor bacterial growth. The sensor demonstrated high efficiency in monitoring subsurface dynamics of E. coli growth between two layers of LB agar. The resonant amplitude variations (Δ Amplitude (dB)) were recorded for different volumes of E. coli (3μL and 9μL) and compared to control without E. coli for 36 hours. The control showed a maximum amplitude variation of 0.037dB, which was selected as a threshold to distinguish between the presence and absence of E. coli growth. The measured results by sensors were further supported by microscopic images. It is worth noticing that the amplitude variations fit well with the Gompertz growth model. The rate of amplitude change correlating bacteria growth rate was calculated as 0.08 and 0.13dB/hr. for 3μL and 9μL of E. coli, respectively. This work is a proof of concept to demonstrate the capability of microwave sensors to detect and monitor subsurface bacterial growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.