Abstract

High resolution digital cameras and state-of-the-art image editing software tools has given rise to large amount of manipulated images leaving no traces of being subjected to any manipulation. Passive or blind forgery detection algorithms are used in order to determine its authenticity. In this paper, an algorithm is proposed that blindly detects global rescaling operation using the statistical models computed based on quadrature mirror filter (QMF) decomposition. Fuzzy entropy measure is employed to choose the relevant features and to remove non-important features whereas artificial neural network classifier is used for forgery detection. Experimental results are presented on grayscale and [Formula: see text]-component images of UCID database to prove the validity of the algorithm under different interpolation schemes. Results are provided for the detection of rescaled images with JPEG compression, arbitrary cropping and white Gaussian noise addition. Further, results are shown using USC-SIPI database to prove the robustness of the algorithm against the type of database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.