Abstract

We present a tool to estimate the interference between nodes and links in a live wireless network by passive monitoring of wireless traffic. This tool does not require any controlled experiments, injection of probe traffic in the network, or even access to the network nodes. Our approach requires deploying multiple sniffers across the network to capture wireless traffic traces. These traces are then analyzed using a machine learning approach to infer the carrier-sense relationship between network nodes. This coupled with an estimation of collision probabilities helps us to deduce the interference relationships. We also demonstrate an important application of this tool-detection of selfish carrier-sense behavior. This is based on identifying any asymmetry in carrier-sense behavior between node pairs and finding multiple witnesses to raise confidence. We evaluate the effectiveness of the tool for both the applications using extensive experiments and simulation. Experimental and simulation results demonstrate that the proposed approach of estimating interference relations is significantly more accurate than simpler heuristics and quite competitive with active measurements. We also validate the approach in a real Wireless LAN environment. Evaluations using a real testbed as well as ns2 simulation studies demonstrate excellent detection ability of the selfish behavior. On the other hand, the metric of selfishness used to estimate selfish behavior matches closely with actual degree of selfishness observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.