Abstract

Passive magnetic attitude stabilization systems are simple, easy to realize, cheap, and do not require software development and on-board energy consumption. Owing to these features, passive magnetic attitude stabilization systems were selected for the EduSAT (Educational Satellite) microsatellite, a student-built satellite funded by the Italian Space Agency, scheduled to be launched in the last quarter year of 2010. The passive magnetic attitude stabilization system is based on a permanent magnet, which provides a restoring torque to align an oriented axis of the satellite with the Earth's magnetic field direction, and an energy dissipation system, which can consist of a set of permeable rods magnetized by the oscillation of the geomagnetic field along their axis. UNISAT-3 attitude determination results after 1 year from its launch demonstrated the necessity of an accurate design and manufacturing process of soft magnetic strips. Predicting system performance in orbit and evaluating the obtainable accuracy are not trivial: the main problem is knowing the effective magnetization of the permeable rods. The paper deals with sizing, choice of material, manufacturing process, and arrangement of a set of permeable rods on board the EduSAT microsatellite on the basis of previous flight experience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call