Abstract
With the merits such as hiding receiving, easy-deploying and high security, passive location has attracted more and more attention and plays an important role in fields as diverse as navigation, location, and tracking, etc. However, the current filters models for passive location methods are most under the framework of the probability theory, thus they can not estimate the state in some passive location with fuzzy uncertainty accurately. Although the fuzzy extended Kalman filter (FEKF) can deal with the fuzzy uncertainty, it unavoidably introduces truncation error. In this paper, based on the FEKF and the iterated extended Kalman filter (IEKF) principle, a new fuzzy passive location model is built, and moreover, an iterated fuzzy extended Kalman filter (IFEKF) is proposed for estimating the target state. Compared to the FEKF and the IEKF, the proposed algorithm can not only reduce the truncation error, but also deal with fuzzy uncertainty. Moreover, it is proved that the IFEKF update is an application of the Gauss–Newton method. Then, a fuzzy passive location algorithm is proposed. Simulation results demonstrate that the proposed approach has better estimation precision than the traditional fuzzy extended Kalman filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.