Abstract
Exercise modifies respiratory functions mainly through the afferent feedback provided by exercising limbs and the descending input from suprapontine areas, two contributions that are still underestimated in vitro. To better characterize the role of limb afferents in modulating respiration during physical activity, we designed a novel experimental in vitro platform. The whole central nervous system was isolated from neonatal rodents and kept with hindlimbs attached to an ad-hoc robot (Bipedal Induced Kinetic Exercise, BIKE) driving passive pedaling at calibrated speeds. This setting allowed extracellular recordings of a stable spontaneous respiratory rhythm for more than 4 h, from all cervical ventral roots. BIKE reversibly reduced the duration of single respiratory bursts even at lower pedaling speeds (2 Hz), though only an intense exercise (3.5 Hz) modulated the frequency of breathing. Moreover, brief sessions (5 min) of BIKE at 3.5 Hz augmented the respiratory rate of preparations with slow bursting in control (slower breathers) but did not change the speed of faster breathers. When spontaneous breathing was accelerated by high concentrations of potassium, BIKE reduced bursting frequency. Regardless of the baseline respiratory rhythm, BIKE at 3.5 Hz always decreased duration of single bursts. Surgical ablation of suprapontine structures completely prevented modulation of breathing after intense training. Albeit the variability in baseline breathing rates, intense passive cyclic movement tuned fictive respiration toward a common frequency range and shortened all respiratory events through the involvement of suprapontine areas. These observations contribute to better define how the respiratory system integrates sensory input from moving limbs during development, opening new rehabilitation perspectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.