Abstract

Soil moisture is an important component of the water cycle and will be measured for the first time on a global scale by a dedicated passive L-band microwave radiometer that is planned for launch in 2008. Here, the contribution of topography to the error budget is examined for a vegetated scene with uniform microwave emission. Dual-polarization brightness temperature curves were generated over a range of look angles for 1-D scenes with simple geometrical features, and the soil moisture was retrieved assuming a flat surface. The errors were small for the scenarios considered. Theoretical errors were tested for realistic topography with a DEM transect of a mountainous region, and were found to be comparable. Knowledge of the mean slope from high-resolution DEM data can be used to improve the accuracy of the retrieval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call