Abstract

Functional Electrical Stimulation (FES) may be used in rehabilitation and assistance of people with Spinal Cord Injury (SCI). One significant application is facilitating physical exercise, mainly when combining FES with mechanical platforms, such as tricycles. However, there are still technical challenges in FES cycling protocols, such as improving control and cycling performance. Here we show how passive elements in knee orthoses during FES cycling could increase the average cadence, taking advantage of the cycling movement. Our approach is twofold. First, we simulated the forward dynamics of a detailed musculoskeletal model with passive elements over the knees. Simulations showed that specific spring stiffness ranges increased the crankset speed during cycling by more than 50%. Using parameters found in simulations, we built a pair of passive orthoses and performed experiments with one individual with SCI. During two days, the volunteer cycled with similar stimulation magnitude with and without the passive elements. We observed that the average crankset speed was higher by more than 10% when the springs were attached to the passive orthoses. These results show the potential of using passive elements to increase cycling speed for FES cycling with similar or even lower stimulation magnitude, leading to longer exercise duration.

Highlights

  • S PINAL cord injury (SCI) is a severe clinical condition with substantial physical, psychic, and social repercussions

  • The results showed that the addition of the passive element reduced the overall level of quadriceps excitation

  • Intensity of elasticity is referred to as the maximum torque, an approach that is often employed in the corresponding biomechanics literature [18]

Read more

Summary

Introduction

S PINAL cord injury (SCI) is a severe clinical condition with substantial physical, psychic, and social repercussions.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.