Abstract

BackgroundPseudomonas aeruginosa sepsis is associated with unacceptably high mortality and, for many of those who survive, long-term morbidity. The aims of this study were to production of IgY against chimeric protein pilQ-pilA-DSL region and killed- whole cell Pseudomonas aeruginosa O1 (PAO1) strain and their efficacy for immunoprophylaxis of sepsis caused by P. aeruginosa in a rabbit model. MethodsSpecific IgY was obtained by immunization of hens. The purity of IgY was determined by SDS-PAGE analysis. The effect of IgY on growth and hydrophobicity of P. aeruginosa were performed through time-kill assay and microbial adhesion to hydrocarbons test (MATH), respectively. The efficacy of specific IgYs was examined against P. aeruginosa sepsis in a rabbit model. The rabbits were monitored for 72 h to record physiological characters and survival. Hematologic factors, C-reactive protein, pro-inflammatory cytokines, and bacterial count from blood and solid organs were measured, periodically. ResultsWe found that the growth inhibitory effect of the anti- killed whole cell IgY was higher than anti-pilQ-pilA IgY (P < 0.001). The hydrophobicity effect of PAO1 increased when bacteria were opsonized by anti- killed whole cell IgY while the hydrophobicity activity was decreased following incubation of PAO1 with anti-pilQ-pilA IgY in a broth medium (P < 0.001). Following intravenous (IV) administration of produced IgYs, no significant difference was observed in the survival, decrease in inflammatory mediators and clinical symptoms between the groups 48h post infection (P > 0.05). Moreover, no considerable decrease was observed in the bacterial load of blood, lungs and kidneys in rabbits treated with specific IgYs and control groups (P > 0.05). No bacteria were found in the spleen and liver samples from infected rabbits. ConclusionAlthough produced IgYs had a good immunoreactivity, IV immunization of IgYs was not protective against P. aeruginosa sepsis in the rabbit model. Further studies are needed to assess the immune response and decreasing mortality rate using the rabbit sepsis model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call