Abstract

Tau pathology is essential in the pathogenesis of Alzheimer's disease (AD) and related tauopathies. Tau immunotherapy aimed at reducing the progression of tau pathology provides a potential therapeutic strategy for treating these diseases. By screening monoclonal antibodies 43D, 63B, 39E10, and 77G7 that recognize epitopes ranging from tau's N-terminus to C-terminus, we found the 77G7, which targets the microtubule-binding domain promoted tau clearance in a dose-dependent manner by entering neuronal cells in vitro. Intra-cerebroventricular injection of 77G7 antibody reduced tau levels in the wild-type FVB mouse brain. Without influencing the levels of detergent-insoluble and aggregated tau, intravenous injection of 77G7 reduced tau hyperphosphorylation in the brain and improved novel object recognition but not spatial learning and memory in 15–18-month-old 3xTg-AD mice. These studies suggest that epitopes recognized by tau antibodies are crucial for the efficacy of immunotherapy. Immunization with antibody 77G7 provides a novel potential opportunity for tau-directed immunotherapy of AD and related tauopathies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call