Abstract

Our studies were aimed at developing a vaccination strategy that could provide protection against highly pathogenic avian influenza virus (AIV), H7N3 or its variants outbreaks. A purified viral stock of highly pathogenic H7N3 isolate was lysed to isolate viral proteins by electrophresing on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by their elution from gel through trituration in phosphate buffered saline (PBS). Overall, five isolated viral polypeptides/proteins upon characterization were used to prepare hyperimmune monovalent serum against respective polypeptides independently and a mixture of all five in poultry birds, and specificity confirmation of each antiserum through dot blot and Western blotting. Antiserum generated from various group birds was pooled and evaluated in 2-week old broiler chicken, for its protection against viral challenge. To evaluate in-vivo protection of each antiserum against viral challenges, six groups of 2-week old broiler chicken were injected with antiserum and a seventh control group received normal saline. Each group was exposed to purified highly pathogenic AIV H7N3 strain at a dose 105 embryo lethal dose (ELD50). We observed that nucleoprotein (NP) antiserum significantly protected birds from viral infection induced morbidity, mortality and lowered viral shedding compared with antiserum from individual viral proteins or mixed polypeptides/proteins inclusive of NP component. The capability of individual viral polypeptide specific antisera to protect against viral challenges in decreasing order was nucleoprotein (NP) > hemagglutinin (HA) > neuraminidase (NA) > viral proteins mix > viral polymerase (PM) > non-structural proteins (NS). Our data provide proof of concept for potential utilization of passive immunization in protecting poultry industry during infection outbreaks. Furthermore conserved nature of avian NP makes it an ideal candidate to produce antiserum protective against viral infection.

Highlights

  • Avian influenza virus (AIV) besides reducing commercial production of poultry is a causative agent for influenza among humans by cross-species infections [1]

  • AIV grouping is based on antigenic variations in haemagglutinin (H1 – H16) and neuraminidase (N1 – N9) proteins and each strain of virus is named based on respective H and N antigenicity [3]

  • According to virulence pattern in poultry, the AIV is mainly classified into two major groups: highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI)

Read more

Summary

Introduction

Avian influenza virus (AIV) besides reducing commercial production of poultry is a causative agent for influenza among humans by cross-species infections [1]. AIV grouping is based on antigenic variations in haemagglutinin (H1 – H16) and neuraminidase (N1 – N9) proteins and each strain of virus is named based on respective H and N antigenicity [3]. According to virulence pattern in poultry, the AIV is mainly classified into two major groups: highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI). The HPAI strains are highly virulent and associated with bird mortality approaching 100%, whereas LPAI viruses manifest mild symptoms like decreased egg production and scruffy feathers. Throughout the world majority of avian influenza epidemics are due to HPAI viruses showing H5 and H7 antigenicity [4,5]. In Pakistan, low pathogenic H9N2 along-with high pathogenic H7N3 and H5N1 are the most predominant AIV strains and several outbreaks over the past decades are ascribed to these particular strains [6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call