Abstract

This work aims at answering the question–to what extent thermally compliant buildings are involved in ensuring the winter indoor thermal comfort of occupants in cold semi-arid climates in Morocco. Real-time monitoring of a new-built university building located in eastern Morocco was conducted. The good agreement between the measured and simulated temperatures of the case study building confirmed the accuracy of the developed model. Thereafter, the thermal performance of different external wall configurations was investigated. The results show that compliant buildings guarantee better comfort conditions in winter by passively increasing the indoor air temperature by up to 2 °C, resulting in a maximum percentage of dissatisfaction of less than 13%. The winter discomfort hours based on a temperature set point of 16 °C are reduced by 95% compared to typical buildings. Moreover, the thermal compliance of buildings significantly reduces the daily air temperature amplitude, leading to a periodic dynamic behaviour without peak loads, which could be effective for the building energy management. The efficacy of earthen walls in regulating indoor temperatures was also confirmed due to the excellent thermal inertia of earth. For optimum winter comfort (20 °C), the implementation of the Moroccan building energy code shows up to 72% of reduction in heating demand when applied to conventional buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.